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ABSTRACT

The input impedance of an antenna is highly dependent on
the frequency range in which it operates. For an electrically
small antenna to operate in a broad frequency range, the
antenna must be properly matched. This thesis presents the
design of a matching network for a l-meter monopole antenna,
operating over 30-90 MHz using the real frequency method
(RFM). It outlines the mathematical steps needed to determine
the equalizer function, which ultimately leads to the circuit
design. The goal of the RFM, given the real fregquency data,
is to optimize the Transducer Power Gain (TPG), and minimize
the reflection coefficient or power lost due to the impedance
mismatch. A complete design including network realization is

given. However, no experimental results are presented.
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I. INTRODUCTION

One of the important factors in antenna performance is the
input impedance. The antenna impedance consists of both real
{resistance) and imaginary (reactance) parts. The reactive
component is generally unwanted because it gives rise tc
stored energy in the near field of the antenna {Ref. 8].

The input impedance is primarily determined by the
geometry and electrical size of the antenna, and it can be
significantly different from the impedance of the generator.
To optimize the power transfer from the generator to the
antenna, it is necessary to insert an impedance transformer
between the two. Ideally, the transformer (or matching
network) should be designed to eliminate the reactive
component of the antenna impedance, and at the same time
provide an input resistance equal to that of the generator.
This is relatively easy to accomplish at a single frequency,
but becomes more difficult as the operating frequency of the
antenna increases.

Until the development of the real frequency method (RFM),
a broadband matching network had been designed by an analytic
method or by an iterative trial and error procedure. aAn
analytic method requires complex and rigorous mathematics even
for a simple network. However, RFM, developed by Carlin in

1977, made designing a matching network simpler, more direct




and less complex. It does not assume an equalizer topology,
nor does it require an analytic description of the load (input
impedance of the antenna in our case) as long as it can be
obtained by some means [Ref. 1]. It is a numerical method
that only requires the real frequency data of the load for the
frequency band of interest [Ref. 1].

Although several approaches have been published for
broadband impedance matching, none has been tailored specially
for broadband monopole antennas. However, in his recent work,
Rao [Ref. 10] has built and tested a matching network for a
loaded monopole antenna at HF using the resistivity profile
developed by Wu and King [Ref. 11]. Unfortunately, that
antenna is 35 feet long and is not an acceptable candidate for
manpack or vehicular mount. Therefore a l-meter monopole
antenna was chosen. Like a dipole, this antenna is narrow
band and it is "electrically small” in the very high frequency
(VHF) bard. However, it can be made broadband by resistive
loading and properly designing a matching network.

This thesis describes the mathematical basis of RFM and
uses this approach to design a matching network for a l-meter

monopole antenna operating over 30-90 MHz.




I1. MATHEMATICAL BASIS FOR RFM
In this chapter, the basic concept of RFM is described and

the steps for implementing the RFM are outlined.

A. CONCEPT OF RFM

The best way to describe the concept of a matching network
or equalizer circuit is through the simple description of a
lossless two porti network (Figure 1). In a two port network,
we are interested in relating current and voltage at one port
to current and voltage at the second port. This gives us a
transfer function that characterizes the relationship between
the two ports.

One of the design requirements of broadband matching is to
maximize power transfer between a power generator and the load
over a given frequency range. To this end we consider the

transducer power gain (TPG) as defined by Carlin [Ref. 1]

- - Power Delivered to Load =1 - {n2
TPG = T(w) Power Available from the Generator 2 o?l

where p is the complex reflection coefficient,

between the equalizer and the load.




J

l matching

\J network load

Figure 1 Simple Two-port Network

It can be seen from the previous equation that a perfectly
matched network will have a gain of one. However, this is an
unrealistic design that is not achievable in practice. Our
goal is to design a network which minimizes p and maximizes
the power delivered to the load.

For a given load impedance, 1looking at the Thevenin
equivalent circuit from the loaded port [Ref. 1] allows us to

find an equalizer impedance, Z {(w). Expressing the TPG in

terms of load impedance and equalizer impedance,

) 4R, (W) R (W)
T{w) = ’L< q' - (1)
|2 (w) +Z {w) |
where

R, (w) = load resistance
R, {w) = equalizer resistance
Z,{w) = load impedance
Z,{w) - equalizer impedance.




B. MATHEMATICAL DEVELOPMENT
The fundamental approach of RFM 1is its use of real
frequency data to determine an equalizer function. In
general, the impedance of the network can be complex:
Z,(w)=R,(w) + jX,(w), where R ,(w) is the real part and X (w) is
the imaginary part. We will use R (w) to find Z,(w). The
key, of course, is finding the real part. In a step-by-step
procedure, the next two sections are devoted to finding the
real part (resistance) of the complex impedance function, and
the following section derives the equalizer impedance. One
thing to note is that the poles of the equalizer impedance
must be in the negative half (left) of the complex frequency
plane.
1. Linear Combination Approximation
It is desired to design a broadband equalizer in the
frequency range @ < @ < . The given frequency range is
first partitioned into smaller bands, and the resistance .s
assumed to behave linearly within each sub-band. Several out-
of-band break points are added from zero frequency to the
lower frequency w , and one frequency break point, w,6 is added
beyond w,. The choice of w depends on the roll-off desired.
The first step in solving for an equalizer impedance
is to obtain a linear approximation of the resistance, R (w).
The values of R (w) are dependent on the excursive
resistances, r,, or the unknowns. The excursive resistances

are the ramp values between each of the break points,




0 < w <w . . .< @, for a given frequency range [Ref. 7].
The number of unknowns are determined by the break points.
For example, if there are n break points, there are n-1

unknowns. The relationship between R (w) and r is [Ref. 1]

N

Rq(w)zro+; a,{w)r, (2)
=1
where
1, W, <w
, W-W,
a(w) = — Wi W@, {(3)
W, "Wy
0, W<W,_,;
and r = DC resistance.

The equalizer resistance, R,(w), is made zero for w >

w, [Ref. 1]. From equations (2) and (3), this means that

r, = -é;rk. (4)

If the DC resistance value r 1is available, the number of
unknowns is no longer n-1 but n-2, and we have

n-1

r, = -(r,+ ;:‘rk). (5)
-1

We have only considered the real frequency data thus
far. However, an equalizer impedance fuaction has both even
(real) and odd (imaginary) parts. Since the resistance is
assumed to be piecewise linear in frequency, the reactance

will be defined in the same manner [Ref. 1}. As in the case




of the resistance, the reactance is expressed in terms of the

excursive resistances

N
Xg(w) =32 b (w) 7, (6)

where the coefficients b are obtained from {Ref. 3]

@ e
, 1 VW
b feo | In|<—|dy. (7)
clw) ﬂ(mk_wkd)d[x Iy-wl y

They can be written in a closed form [Ref. 4] as

1

b {w) = —————w, [(x+1)log(x+1) + (x-1) log|(x-1) |-2log (x) ]
(wk'wk.t)
where
Xy
x=2
Xk

With the real and imaginary parts defined, an IMSL
optimization routine ZXSSQ can be employed to find the
excursive resistances required to produce a given TPG. The
error function to minimize is [T -T(w)|, where T 1is the
assumed power gain, which can be increased until the
resistance values just begin to become negative.

2. Rational Approximation

The second step is to obtain a rational function which
closely approximates the piecewise linear curve specified by
the resistive excursions [Ref. 2]. This is done so that a
circuit realization of the equalizer impedance can be
determined using the Gewertz method which requires a ratio of

7




polynomials. For convenience, we assume that the DC
resistance, r,, is zero in the subsequent development.

Previously we have stated that R (o) must be non-
negative for an infinite frequency range [Ref. 1]. This
places a constraint on an optimization routine, and
constrained optimization is difficult to handle. This is
because most optimization routines are written for
unconstrained conditions [Ref. 5].

Direct use of the unconstrained optimization will lead
to positive and negative values of resistances which are
unacceptable. To get around this, the numerator and

denominator polynomials in the rational function approximation

(A, + A,0% +... + A,0%)  a(@?)

Rqt@) (1 + Biw? +... + B,w?") B(w?)

are expressed in terms of a second polynomial of the form,
P(o) = 1 + x0 + . . . + x0". The denominator polynomial,

for example, can be written as

B(w? =-§ (P2 (@) + P2 {-w)]. (9)

Noting that R,(0)=0 and using only one term in the numerator
polynomial, the rational resistive function can now be written

as




2 .2k 2
A X 0 AW
R (w) = = 1 '

B(w?) N
1+Y Bw*®

=1

(10)

where the coefficients A, and B, in terms of x; are as follows

[Ref. 5]:
A, = x50
B, = xi+2x,
(11)

, K

By = xi+2 (x2k+;: Xy1XzkFe1)
=2

B, = x3»0.

Although the x;'s may be negative, I'éq(m) is greater than zero

in view of equation (9). Again, the IMSL optimization routine
ZXSSQ can be employed to find the x; coefficients. The

function to minimize is [R-R]|.

3. Equalizer Impedance Using Gewertz Method
With the real part of equalizer approximated as a
rational function, Gewertz's method can be used to find the

equalizer impedance function [Ref. 6]. Given the real part,

B - A(w?) _ mm-nn,
(@) Blw?) pi-n? lswe

\12)

our objective is to determine the impedance




- Pls) . m+n
Zos) Q(s) m, + n,

where s=jo, m;, and m, are the even parts of P(s) and Q(s)
respectively, and n, and n, the odd parts. The denominator

polynomial, Q(s), is related to B(m?)

B(w?) |40 = B(-8%) = Q(8)Q(-8) (13)

where Q(s) has all of its roots in the left hand plane and
Q(-8) has its roots in the right hand plane.

We now solve for P{s), whose order must not exceed
that of Q(s8). Using undetermined coefficients [Ref. 6], we
express Z.,(s) as

P(g) _ _ Co87+Ci8™ M+, . . +c,

¢ B Q‘s) Sn+dlsn'1+dzsn-2+. .. "'dﬂ ' (14)

Equating P(s) term by term to (mm, - n;n,) and solving for
coefficients yields P(s). Reference 6 discusses other
procedures for the solving rational function of a driving
point impedance.

4. Circuit Realization

Now that Z,(s) is known, a circuit that provides the

required impedance is obtained by a conventional synthesis
method. This is a procedure by which a network is generated
from a given input/output relationship [Ref. 8]. The details

will be discussed in the next chapter.

10




IIXI. APPLICAT.ON OF RFM

In this chapter, we will apply the mathematical procedures
of the previous chapter to design a realizable circuit. As an
illustration of the method, the results presented in [Ref. 1]
will be duplicated and then applied to a l-meter monopole
antenna. In order for this antenna to operate in a broad
frequency range, the matching network must make the antenna
impedance less sensitive to frequency. This is discussed

briefly in the l-meter monopole design section.

A. EXAMPLE OF RFM APPLICATION

In order to verify a computer program (Appendix A) and to
evaluate an IMSL optimization routine (Appendix B), published
data generated by Carlin [Ref. 1] were used to design an
equalizer network.

The matching network we wish to design for the given load
is shown in Figure 2. The normalized frequency range of
interest is from 0 to 1.25 (0 < w < 1.25), and an increment of
0.25 will be used. This gives 6 break points (observation
points). Since the design requirement states that the TPG
must be maintained at T(0)=0.846, this forces the circuit to
have a resistance value of r,=2.29 ohms. Calculation for the
DC resistance value can be obtained with the following

formulas [Ref. 1]:

11




Equaizer Load impedance

Figure 2 Given Circuit with Load

IO = RI(O) [ko % \/ko"ll
2 (15)

k, = 7(6) -1

where T(0) is the DC gain.

Based on these formulas, there are two cases of finding
the rational function: case 1 where r, > R;(0) and case 2
where r, < R;(0). 1In this example we will perform the design
with case 1. With r, known, the unknowns are no longer 5 but
4.

Keeping in mind the concept of RFM, the load impedance
values are first obtained from the given RLC values shown in

Figure 2. The results are given in Table I. The a, and b, of

12




equations (3) and (8) were computer programmed, a listing of

which is provided in Appendix A.

Table I: Impedance of the Load
L]

Freq Impedance Value (Q)

0.00 1.0000 +3j0.0000
0.25 0.9174 +30.2998
0.50 0.7353 +30.7088
0.75 0.5525 +3j1.2278
1.00 0.4098 +31.8082
1.25 0.2358 +33.0255

1. Linear Combination Approximation of Equalizer
Resistance

Substituting equations (2) and (6) into equation (1),

the TPG is redefined in terms of r, [Ref. 2]

N
4R; (), + E a(w)r}
T(w) = —2

N 2 N 2
R (w) +,+ ga,(w)r‘} + X, () + ;bkw)r,,}
1

and the function to minimize is |T,-T{(w)|. Programming the

above equation using an IMSL optimization subroutine ZXSSQ

with |T,-T(w)| as a minimization function, the r, values were

obtained. The r, values change with the initial conditions
provided to the 2ZXSSQ subroutine. For this example, the

initial values were all set to zero. These values in turn

13




were used to calculate the resistance and reactance at each
breakpoint.
2. Rational Approximation
Now that we have represented R, (w) as a linear

combination, the resistance values are used to calculate
R,(w) . The function to minimize is |R, - R| at the discrete

frequencies «, k=0,1,. . . n. Again, the IMSL subroutine

ZXSSQ was used. The rational function is obtained as

2.29 . Alw?)

R (@) = .
v 1+4.80% -10.20* + 8.39w% B(w?3)

A plot of the rational function and linear combination is
given in Figure 3. As can be seen from the graph, the piece-
wise linear approximation & :d rational approximation are in
agreement.

3. Application of Gewertz Method

We now have the real part of the equalizer impedance.

From the relationship between R, and Q(s) as defined in the

equations (12) through (14), we can express B(w?) in terms
of B(-s82?) as

B(-8%) =1 -4.88%2 - 10.28% - 8.4s€.

Finding the roots of B(-s?) and writing Q(s8) in factored form,

we obtain Q(s) as

14




*~  Linear Approximation
- Rational Approximation

2.5

1.5 \\

Resistance in Ohms
/

N
~L

% 0.2 0.4 0.6 0.8 1 1.2 1.4
Frequency
Figure 3 Rational and Linear Resistive Curves
Q(s) = (5+.887+7.316) (s+.887-7.316) (s+3j.389) (s-7.389)

2.953+42.952%+3,335+1.

L}

The roots of B(-82) were found by a root finding IMSL

subroutine called PLROC.
The next step is finding the coefficients of P(s).

The equalizer impedance, Z,(s), defined in terms of P(s) and

Q(s) is

Z.(s) = P(s) _ c,83+c,8%+c,8+C,
7 0(s) 2.8683+2.86852+3.278+1

Equating the real part of Z.(S)|,;, to R,(w), we have

15




mm, -n,n, = (c,8%+c,) (2.868%+1) - (c,8+c,8) (2.868%+3.293) I,.j,,,
= 2.29.

Equating the coefficients of like powers on both sides, we get

-2.86C,5%guj0 = 0 3.27¢,-2.86C,8+2.86C,;8%|,.,,=0

Clsz*Z-SSC3-3-27C2|'.j0‘0 C3$2129-

Solving the above equations, we obtain Z (s) as

2.895%+2.898+2.29
2.8683%3+2.,865%+3.275+1

Z,(s) =

4. Circuit Realization

From Z,(s), it is necessary to find the circuit

elements required to realize the matching network. For this
example, the degree of the polynomial in the denominator is
larger than that of the numerator. In order to divide a
smaller degree into a larger degree, we will convert

Z,(8) to Y,(3),

3 2
Y,(8) = 1 _ 2.8638°+2.868%+3.27s+1

Z,(s) 2.8985%+2.895+2.29

The division process is as follows:

16




0.99s
2.895%+2.,895+2.,29)2.865°+2.865%+3.275+1
2.865%+2.865%+2.27s
1.00s+1.

The first circuit element is a capacitor. Again converting

and repeating the process gives

2.89s
1.05+1)2.895%+2.895+2.29
2.895%+2,895+0.00
2.29

and the second element is an inductor. This process is
continued until it is complete and further division cannot be

carried out. The last division gives us

0'438

2.29J1.00s+1
1.00s+0

1
which is another capacitor. The remaining value is the DC
resistance which equals to the original value we have
calculated based on the assumed TPG of 0.846.

Now that we have our circuit elements, the question is
how these elements are positioned. The crucial step is
placing the first element, for other elements follow in an
alternating sequence of parallel or series arms away from the
load. This provides a ladder network. The final circuit to

achieve Z,(s) is shown in Figure 4.

17




2.83H

Equalizer

Figure 4 Final Matching Network

B. MATCHING OF 1-METER MONOPOLE ANTENNA
We have gone through an example of how a matching network
is designed. We will apply this procedure to a 1l-meter
monopole antenna operating over 30-90 MHz with the break
points chosen at 10 MHz increments. The break points are
normalized to 90 MHz. Details of the calculation as shown in
the previous section will be avoided, and only the highlights
will be presented.
1. Wide-banding 1-meter Monopole Antenna
An antenna is defined as broadband "when its impedance
and pattern do not change significantly over about an octave
or more", or when the ratio between the upper frequency and
the lower frequency is greater than 2 [Ref. 9].
The input impedance is highly dependent on the

frequency of operation.

18




For an electrically small
antenna to operate over a - iom
broad frequency range without
continuous fluctuation in
impedance (which in turn

restricts the power transfer H

from the generator to the

antenna), the antenna must be 2,0

made lossy; i.e., a resistive

load (or loads) mist be added Figure 5 Monopole Antenna
Divided into N segment

to the antenna [Ref. 9]. The
antenna we wish to look at has a height of 1 meter and a
radius of 0.005 meter. It must operate in a frequency range
of 30-90 MHz. Since the wavelength near the low frequency end
is much larger than its length, the antenna is considered
electrically small.

In order to calculate the resistive values to make the 1-
meter monopole broadband, we used the concept of resistive

loading proposed by Wu and King in [Ref. 11]. They used a

continuously distributed load of the form

; " 60
=) = 524 (16)

where h is the height of an antenna, and z is an incremental
distance from one end point of an antenna {2=0) to the

opposite end (z=h) as shown in Figure 5.

19




The quantity ¥ is

¥ = 2{sinh‘1(—g)—c(2A,2kh) -5 (24, 2kh) né (1-e M) (17)

where a is the radius, A=ka, and X is the wavenumber in free

space (k = w/fer,) . The quantities C{a,x) and S(a,x) of
equation (17) are defined as [Ref. 11]
T 1-cosW
-COS
= —er 8
cla, x) { 25 du (18)
X 'W
. (sin
S(a,x) [ -2 du (19)
where
W= (u?+ a2, (20)

We have calculated the various parameters for

a

continuously distributed load at the geometric mean frequency

of 52 MHz. For the l-meter monopole, ¥ is [Ref. 13)

sinh-*(200) - €(0.0109,2.176) - 7S(0.0109,2.176)
=2 J o] (-2.176)
* TToss *7° )

9.24 - j1.92.

<=
s

Referring back to equation (16), our continuous load value
using a 30% multiplication factor is [Ref. 13)

i _ 15(11.4-j2.6)
Zi(2) (h=2)
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Since we are interested in lumped loading, we obtained

a discrete approximation to the continuous profile over a
segment Az, where N is the total number of segments (= #/A2)

and nAz is the location of 2Z,. We have used N=8 for the
l-meter monopole.

Once the required load values were calculated for each
segment, the WIRE program [Ref. 14] was used to generate the
impedance characteristics of the antenna. Table II shows the
impedance characteristic of the antenna with and without the
load added. The antenna impedance characteristics plotted on

a Smith chart are shown in Figure 6.

Table II: Unloaded and Loaded Impedance for 1l-meter

Monopole Antenna
- ]

Freq Loaded Unloaded

(MHz) (ohms) (ohms)

(30) (82.57 -3375.4) (3.850 -3346.2)
(40) (90.22 -3259.5) (7.040 -3223.4)
(50) (100.9 -3j185.0) (12.75 ~3138.4)
(60) (115.1 -3132.5) (20.85 -3J70.40)
(70) (132.9 -394.32) (33.35 -39.050)
(80) (154.1 -3j67.81) (53.30 +351.00)

(90) (177.5 -352.43) {86.90 +3115.0)

2. Equalizer Impedance Calculation
Again the same procedure as above was used to
calculate the impedance. Here we varied the DC transducer

gain until the resistance values just approach zero from
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4 A Unloaded
Loaded

Figure 6 Impedance Characteristics of l-meter Monopole

positive values. The corresponding gain is then treated as
optimum. The same program used to find ﬁhe resistance values
for the previous example was used in this case after slight
modification. The difference is that the design called for a
fixed TPG of 0.846 for the previous case, whereas, here we are
interested in the optimum TPG. An optimum TPG, T,, was
located at 0.4785, and the comparison of the resistance plots
is given in Figure 7. The plot shows that the rational and
linear approximations closely follow each other.

The rational resistance function for the monopole is

Rq(w) = 3.59w? A{w3)

1-8.59w?+56.64Ww%-95.01w%+77.03w® B(w?)
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Figure 7 Comparison of Resistance Characteristic of 1 meter
Monopole Antenna

Following the steps specified in the previous chapter, the

positive real roots of B(-—sz) are

(s + 0.3147 + 70.7979)
(s + 0.3147 - 70.7979)
(8 + 0.1947 + 70.3420)
(s + 0.1947 - 70.3420)

which gives Q(s) as

Q(s) = s* +1.025% + 1.1452 + 0.384s + 0.114.

To be consistent with the assumed form of B(w?), Q(s) must be

divided by a constant value such that the term independent ofs

is equal to 1. For the above equation, we divided by 0.114 to

obtain the new Q(s) as
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0(8) = 8.788%+8,.9453+49.9752+3.378+1.

The impedance Z (s} is now ;ssumed to be of the form

z(s) = C,84+c 83+c,82+C,8+C, _ P(s)

q 8.78384+8.9453+9,9782+3,37s+1 Q(8)
. mta,
m,+n,

The unknowns in the numerator can be obtained by multiplying

the odd and even parts and subtracting

I (8.7854+9.97382%+1) (c,8%+c,8%+c,)
™I ™- (8.9458%+3.379) (c,83+cy8) '

The result is equated to A{w?) for s=jw. Expressing the

unknown coefficients into a matrix form {AX}={B} and solving

for {X}, where (X} represents the coefficients of .(s), we

have
71.00 0.00 0.00 0.00 0.007] |4 T0.00]
0.00 0.00 -8.78 8.94 0.00{ {5 0.00
0.00 -8.94 9.97 -3.37 0.00| {c;| =]0.00].
0.00 3.34 -1.00 0.00 0.00| |¢,| [3.59
0.00 0.00 0.00 0.00 8.78) |c | [0.00]

The IMSL subroutine LEQIF is used to solve the matrix
equation, the coefficients are found to be
C,=0.0 ¢,=2.33 (,=2.38 ¢;=1.77 ¢=0.0

and Zg\8)
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v 8.785% + 8.945% + 9,975 + 3.37s + 1

In the above equation, frequency has been normalized such that
s=1 corresponds to 90 MHz. Furthermore, the impedance itself

is normalized such that Z; = 1.0 corresponds to 500 ohms.

The matching circuit is now obtained by the synthesis
method. Since the power of the denominator is larger than the

numerator, we convert Z,(s) to Y,(s) and reduce the equation

to

Y,(s) =3.77s + T

T, 1
1.10s 0.299

0.71s8 +

3.268 +

To obtain the value of the circuit elements, they need to be
denormalized. If we were to match this to a simple 75 ohm
coaxial transmission' line, a transformer could be used.
Taking the denormalized resistance value to be 150 ohms
(0.299x500) from the above equation, and using the transformer
with a turns ratio of 1: 1.41, the circuit in Figure 8 is
obtained.

The TPG with the matching network is plotted in Figure
9. The equalizer tunes the resistance and the reactance values
of the load and maintains an approximate gain of 0.4785.

The resistance function indirectly determines the
number of circuit elements required to design a matching

network. From equation (10), it is seen that the maximum
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power of the denominator 1is 2n. The number of circuit
elements required for the design is usually greater than or
equal to n. Therefore, increasing the degree of denominator
will increase the number of circuit elements.

Regardless of what the highest degree of the
denominator polynomial is, the resistance of the rational
function approximation must closely follow the 1linear
approximation. Some of the higher order approximations with
n=5 and n=6 for the l-meter monopole are shown in Figure 10.
It can be seen from the figure that as more terms are included
in the polynomial a closer approximation is achieved;
however, the TPG is not significantly affected by the highest
power of the rational resistance function beyond a certain
number of terms. Therefore, the minimum acceptable order in
the rational resistance polynomial should be used. Otherwise,
the mathematics becomes cumpersome.

As an example, if we had designed a matching network
using n=6, the rational resistance function would have 'een

¢ 1-19.3w%+180.70%-733.5w%+1500.8w8-1425.3w1%+505.5w??

and the equalizer impedance would be

40.798%+33.3954+63.778%+24.515%+17.07s
4.745%+3.885°+10.385%+5.2853+6.325%+1.545+1

Z,(8)=
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The above impedance function is realized by the network shown
in Figure 11. The complexity of the matching network has been
increased (compared Figures 8 and 11), but the TPG has not
changed significantly. It is still given by the piecewise

curve of Figure 9.
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IV. CONCLUBION

The real frequency method provides an elegant, yet simple
way of designing a matching network for any load. This thesis
concentrated on using this method to design a matching network
for a l-meter monopole antenna. It can be seen from the
verification of Carlin's data and from the application to a 1-
meter monopole antenna that this numerical technique is
readily realizable and easy to implement. The basic
assumption is that the antenna impedance characteristics are
known and that these characteristics are provided to the
circuit designer. With the l-meter monopole antenna we had to
add a resistive load along the antenna in order to make its
impedance characteristics broadband. Then we were able to
design the equalizer. The key to finding the equalizer
impedance is determining the resistance function, which is
done using the RFM. Once this is found, the equalizer can be
completely determined.

The number of elements required to design a matched
circuit is normally determined by the rational resistance
function as shown in equation (10). Generally, n indicates
the number of circuit elements required for the design.
Carlin used 2n=6 for the highest degree of the rational
resistance function, and his circuit was composed of three

elements. For the l-meter monopole, 2n=8 gave a minimum of
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five (transformer inclusive) circuit elements. For the higher
orders (n > 6), the l-meter monopole required seven circuit
elements. The number of circuit elements required is usually
greater than or equal to n. Regardless of the power of the
rational resistive function, the TPG is still the same as
specified by the straight line approximation. Therefore, a
minimum order of power of the rational resistance function
that closely follows the straight line approximation should be
used. Otherwise, the mathematics become cumbersome.

For this thesis, simple software was written to calculate
some of the values. The ease of the programming was due to
the availability of the required software in the IMSL Math
Library. Listings are included in Appendix B.

Although this thesis was limited to a simple l-meter
monopole antenna, the technigques presented herein can be

adapted to design a wideband matching network for any load.
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APPENDIX A
PROGRAM FOR 1~METER MONOPOLE ANTENNA

THIS PROGRAM TAKES THE IMPEDANCE DATA OF 1 METER MONOPOLE
ANTENNA AND CALCULATES THE RESISTANCES USING TWO METHODS:
LINEAR COMBINATION AND RATIONAL FUNCTION. THE RATIONAL
FUNCTION

EXTERNAL CURSM1

PARAMETER (M=11,N=9,XJ=(N+1)*N/2,WO=5*N+2*M+XJ)

INTEGER IXJAC,NSIG,MAXFN,IOPT,INFER,IER

REAL PARM(4),X(N+1),F(M),XJAC(M,N+1) ,XJTJ (XJ) ,WORK (WO) ,
+EPS, DELTA, SSQ,AK(20,20) ,BK(20,20) ,W(20),2(20,20),Y(20,20),PI,
+AZ (20,20) ,BZ(20,20),CZ(20,20) ,AY(20,20) ,BY(20,20),CY(20,20),
+RQ(20) ,RR,XQ (20} ,XX,T(20) ,RO.TPG

COMPLEX IMPED(20)

COMMON RO, IMPED, AK,BK, T, TPG

OPEN(UNIT=1,FILE='RECURSM DAT',6 STATUS='0OLD')
OPEN (UNIT=2,FILE='FREQM DAT',STATUS='OLD')
OPEN (UNIT=3,FILE='AKM DAT',6STATUS='OLD')
OPEN (UNIT=4 ,FILE='LOAD DAT',6 STATUS='OLD')
OPEN(UNIT=8,FILE='BKM DAT',STATUS='OLD')
OPEN (UNIT=5,FILE='RQM DAT',STATUS='OLD')

READ (6,*) TPG
M=11

N=9

IXJAC=M
NSIG=5

EPS=0.0
DELTA=0.0
MAXFN=2000
IOPT=1

DO 110 I=1,N
X(I)=0.0

RO=0.0
PI=3.412

*khkkkkkkkkk*x CALCULATE AK(W) *khkhkkkkkkhhkk

READ (4, *) (IMPED(I),I=1,M)
READ(2,*) (W(I),I=1,M)
DO 10 K=1,M
KK=K~-1
DO 20 I=1,M
IF (W(K) .LE. W(I)) THEN
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20
10

51
50

32

AK(K,I)=1.0
ELSEIF (W(KK).LE. W(I).AND.W(I) .LE. W(K)) THEN
AK(K,I)=(W(I)-W(KK))/(W(K)-W(KK))
ELSEIF (W(I) .LE. W(KK)) THEN
AK(K,I)=0.0
ELSE
AK(K,I)=0.0
ENDIF
WRITE (3, *)AK(K,I)
CONTINUE
CONTINUE

khkkkhhkkkhkhkhkttk CALCULATE BK(W) *hhkkkhhhhkdhhkhhhhsk

DO 50 K=1,M

QOOO0O0O0O0O

CONTINUE

DO 30 K=1,M
DO 31 I=1,M
IF (W(K) .LT. .001 .OR. W(I) .LT. .001) THEN

Z(K,I1)=0.0
GO TO 32
ENDIF

IF (W(I) .EQ. W(K)) THEN
BZ(K,I)=0.0

AZ (K, I)=(W(I)/W(K) +1)*LOG(W(I)/W(K) +1)
CZ(K,I)=W(I)/W(K)*LOG(W(I)/W(K))
Z(K,I)=W(K)*(AZ(K,I) + BZ(K,I) - 2*CZ(K,I))
GO TO 32

ENDIF

AZ(K,I)=(W(I)/W(K) +1)*LOG(W(I)/W(K) +1)
BZ(K,I)=(W(I)/W(K)-1)*LOG(ABS(W(I)/W(K)-1))
CZ(K,I)=W(I)/W(K)*LOG(W(I)/W(K))
Z2(K,I)=W(K)*(AZ(K,I) + BZ(K,I) - 2*CZ(K,I))

KK=K-1
IF (KK .EQ. 0.0) THEN
BK(K,I)=2(K,I)
WRITE (8, *) BK(K, I)

GO TO 31
ENDIF
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IF (W(KK) .LT. .001 .OR. W(I) .LT. .001} THEN
Y(KK,I)=0.0
BK(K,I)=1/((W(K)-W(KK))*PI)*(Z(K,I)-Y(KK,I),
WRITE(8,*)BK(K,I)

GO TO 31

ENDIF

IF (W(I) .EQ. W(KK)) THEN

BY (KK, I)=0.0

AY(KK,I)=(W(I)/W(KK)+1)*LOG (W(I)/W(KK)+1)
CY(KK,I)=W(I)/W(KK)*LOG(W(I)/W(KK))

Y (KK, I)=W(KK)*(AY (KK, I)+BY(KK,I)-2%CY(KK,I))
BK(K,I)=1/((W(K)-W(KK))*PI)*(Z(K,I)-Y(KK,I))
WRITE (8, *)BK(K,I)

GO TO 31

ENDIF

AY (KK, I)=(W(I)/W(KK)+1)*LOG(W(I)/W(KK)+1)
BY (KK, I)=(W(I)/W(KK)-1)*LOG (ABS (W(I)/W(KK)~-1))
CY (KK, I)=W(I)/W(KK)*LOG(W(I)/W(KK))
Y (KK, I)=W(KK)*(AY (KK, I)+BY(KK,I)=2*CY(KK,I))
BK(K,I)=1/((W(K)-W(KK))*PI)*(Z(K,I)-Y(KK, I))
WRITE (8, *) BK(K,I)

31 CONTINUE

30  CONTINUE

C khkkkkkkhkkk*kCALL IMSL ZXSSQ **kkkkikhkhhkkhhhsk

CALL 2ZXSSQ(CURSM1,M,N,NSIG,EPS,DELTA,MAXFN, IOPT, PARM, X, SSQ,F,
+XJAC, IXJAC,XJTJ,WORK, INFER, IER)

X{(10)==(X(1)+X(2)+X(3)+X(4) +X(5)+X(6)+X(7)+X(8)+X(9))
WRITE(1,*)'X(10)',X(10)
WRITE(1,*)'T',T

c hkkhkkhkhkkrkkd® CALCULATE RQ AND XQ *hkkikkrkkkhkkk

DO 300 I=1,M
RQ(I)=0.0
300 CONTINUE
DO 80 I=1,M
RR=0.0
DO 81 K=1,N+1
KK=K+1
RR= AK(KK,I)*X(K)+RR
81 CONTINUE
RO (I)=RO+RR
WRITE(S, *)RQ(I)
WRITE(1,*) 'RQ(I)"',RQ(I)
80  CONTINUE

DO 301 I=1,M
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XQ(I)=0.0
301 CONTINUE
DO 90 I=1,M
XX=0.0
DO 91 K=1,N+1
=K+1
XX=BK (KK, I) *X (K) +XX
91  CONTINUE
XQ(I)=XX
WRITE(1,*) 'XQ(I)"*,XQ(I)
90 CONTINUE

WRITE(1,*)'X',X
WRITE(1,*) 'SSQ',SsSQ
END

Chhkkhkhkhkhhkhkkkkkkhkkkkkkkkk* SUBROUTINE CURSM]1*hkkhhkkhhkhkkhkkkkkkkkkxx

C THIS IS A CALLING SUBROUTINE TO IMSL SUBROUTINE 2ZXSsQ. IT
C WILL PROVIDE THE LINEAR RESISTANCE VALUES
C

SUBROUTINE CURSM1(R,M,N,F)

INTEGER M,N,I,K,N6,J
REAL R(N),F(M),SUM(20),AK(20,20),BK(20,20),T(20),W(20),
+TT(20) ,RX(20) , TPG

COMPLEX IMPED(20)
COMMON RO, IMPED, AK, BK, T, TPG

Né=N+1
RX (N6)=RO
DO 10 J=1,N
RX(J)=R(J)

10 RX(N6)= (RX(N6)+R(J))
RX(N6)=-RX (N6)

DO 100 I=1,M
SUMA=0.0
SUMB=0.0
DO 15 K=1,N6
KK=K+1
SUM(I)=AK (KK, I)*RX (K)
SUMA=SUMA+SUM(I)
SUM(I)=BK (KK, I)*RX (K)
SUMB=SUMB+SUM(I)
15 CONTINUE
TT (I)=4*REAL(IMPED(I) ) * (RO+SUMA)
W(I)=(REAL(IMPED (I))+SUMA+RO) #*2+ (AIMAG (IMPED(I))+SUMB) **2
IF (W(I) .EQ. 0.0) THEN
T(I)=0.0
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200

10

GO TO 100
ENDIF
T(1)=TT(I)/W(I)
CONTINUE

DO 200 I=1,M
F(I)=TPG-T(I)
CONTINUE
RETURN

END

RARRRRAAARRAKRARAAXARATIONAL FUNCTION#®kkkhdhkkkbkhhhkd

THIS PROGRAM DETERMINES THE RATIONAL FUNCTION OF REISTIVE
VALUES.

EXTERNAL EXAMP1
INTEGER M,N, IXJAC,NSIG,MAXFN,IOPT, INFER, IER,
+1,J,K,L,NK, KK

REAL PARM(4) ,X(9),F(11),XJAC(11,9), XJTJ (45), WORK(120) , EPS,
+DELTA, SSQ,W(20),B(20),RQ(20),RX(20),A(1)

COMMON RQ,RX,W

OPEN (UNIT=1,FILE="'RQM DAT',6STATUS='OLD')
OPEN (UNIT=2, FILE='FREQM DAT',STATUS='OLD')
OPEN (UNIT=3,FILE='RAT DAT B',STATUS='OLD')

M=11

N=9
IXJAC=M
NSIG=3
EPS=0.0
MAXFN=1000
IOPT=1
DELTA=0.0

DO 10 I=1,N
X(I)=1.0

READ(1, *) (RQ(I), I=1,M)
READ(2,*) (W(I),I=1,M)

CALL XSSQ(EXAMP1,M,N,NSIG,EPS,DELTA,MAXFN,IOPT, PARM, X,585Q,F,
rXJAC, IXJAC,XJTJ,WORK, INFER, IER)

L=(N-1) /2

A(l)=X(1)

B(1)=X(2)**2+2%(X(3))

WRITE(3,*) 'A(1)"',A(1),'B(1)"',B(1)
DO 20 I=3,L

36




30

20

C

10

40

SUM=0.0
K=I
PRINT *,K
DO 30 J=3,K
SUM=SUM+X (J~1) *X (2*K=-J+1)
CONTINUE
B(I)=X(I)**2 + (2% (X(2*K-1) + SUM))
WRITE(3,*) 'B(I)',B(I)
CONTINUE
B(4)=X(N)#**2
WRITE(3,*) 'B(4)',B(4)
WRITE(3,*) 'X',X
WRITE(3,*) 'SSQ',SSQ
WRITE(3,*) 'RQ',RQ
WRITE (3, *) '"RX',RX
END

kkkkkkkikxx CALLING SUBROUTINE FOR RATIONAL FUNCTION **kkkxkk
SUBROUTINE EXAMP1l(X,M,N,F)

INTEGER M,N,I,J
REAL X(N),F(M),SUMA,SUMB,SUMC,RX(20),RQ(20),W(20)

COMMON RQ,RX,W

DO 10 I=1,M

SUMA=0.0

SUMB=0.0

SUMC=0.0
DO 5 J=1,N-1
SUMA=SUMA+ (X (J) *#*2) * (W(I) **2)
SUMA= (X (1) *%2) * (W(I)**2)
DO 6 J=2,N
SUMB=SUMB+X (J) * (W(I) **(J=1))
SUMC=SUMC+X (J) * ( (=W (I)) **(J-1))

RX(I)=SUMA/ (.5%(( (1+SUMB)**2)+( (1+SUMC) **2)))

CONTINUE

DO 40 I=1,M
F(I)=ABS (RX(I)-RQ(I))
CONTINUE

RETURN

END
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APPENDIX B
INSL SUBROUTINE
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